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QUADRUPOLE MODELLING

C. Biscari

Optical linear properties of quadrupoles are usually described in the rectangular model
approximation, in which the first order transport matrix is defined by the magnetic length of the
quadrupole and by its gradient. This is a very good approximation as long as the ratio between the
bore radius and the magnetic length is small. As this ratio increases the field gradient longitudinal
behaviour cannot be approximated by a rectangle and the description by the usual matrix is not
sufficiently accurate. The deviation of the effective linear transport matrix from the rectangular
model increases with the gradient value. A discussion of these deviations for the different types of
quadrupoles in DAΦNE is given in the following.

DAΦNE Main Ring Quadrupoles

In the DAΦNE Main Rings there are eight types of quadrupoles, as reported in the following
table. The magnetic length Lq, the bore radius R, and the maximum gradient Gmax (nominal for the
permanent magnet types) comes from the lattice design.

Table I - DAΦNE Main Rings Quadrupole types

Type
N

in 2 rings
Lq

(cm)
R

(cm)
Lc

(cm)
Rc

(cm)
Rc/Lc

Gmax
(T/m)

Kmax
(m-2) Note

1- S 56 30. 5.0 30. 10. 0.333 10. 6. Straight - Oxford

2- M 28 30. 5.4 29.2 10.6 0.363 6. 3.5 Arcs+shortKloeAnsaldo

3- L 8 40. 10.0 40. 20. 0.500 6.2 3.6 D1+FINUDA-Ansaldo

4- QF1 2 20. 5.2 20. 8. 0.400 5.93 3.49 Pm-KLOE - ASTER

5- QD 2 35. 7.3 35. 12. 0.343 9.66 5.68 Pm-KLOE - ASTER

6- QF2 2 27. 9.2 27. 16. 0.593 4.74 2.79 Pm-KLOE - ASTER

7- Q1 2 15.75 7.0 15.75 12. 0.762 9.43 5.55 Pm-FINUDA-ASTER

8- Q2 2 29.5 6.5 29.5 11. 0.373 10.80 6.35 Pm-FINUDA - ASTER

Types 1, 2, 4 have been already measured at LNF1,2,3,4. It is possible to fit the gradient
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measurements with an analytical function5, corresponding to the gradient created by a cylindrical
current distribution with quadrupolar behaviour, described by two parameters, Rc and Lc, which are
the radius and the length of the cylindrical current distribution (not necessarily equal to radius and
length of the real quadrupole). In table I the values of Rc and Lc are the best values from the fit on
measurements for types 1, 2 and 4; for the types where no field measurements are still available Lc
is equal to the design magnetic length and Rc has been extrapolated from the measured
quadrupoles.

Analytical quadrupole model

The analytical function describing the longitudinal behaviour of the gradient coming from a
quadrupolar cylindrical current distribution of length Lc = 2ZL  and radius Rc is5:

G20(z) = const
9
8

f0(t) − f1(t) + 3
8

f2(t)



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tmax

(1)
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2
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





2k+1

(2)

and tmax = ZL − z , tmin = −ZL − z .

The value of the const  is determined by the integrated gradient:

G20(z)dz
−L

L

∫ = Bρ KLq (3)

where K  and Lq  are the nominal strength and magnetic length of the real quadrupole which we
want to fit with the analytical function.

For each quadrupole type, the function G20(z)  has been computed for −L < z < L , with
L >> Lc + Rc Lc , for different values of K . The 2L  long interval has been divided into N equally
long parts (see Fig. 1), and for each of them the linear matrix has been computed corresponding to
a quadrupole 2L / N  long, with a gradient G20

i  corresponding to the average between the two
values of G20(zi ) and G20(zi+1), being zi  and zi+1 the ith interval limits. Multiplying those N
linear matrices, the symmetric matrix corresponding to the total interval is obtained.

At this point it is possible to check how much this total matrix differs from the corresponding
rectangular model matrix defined by:

2L G20
i

i=1

N
∑ = Bρ KLq (4)

For simplicity all quadrupoles have been treated in the same way, using the analytical
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expression of the gradient, even if for the already measured quadrupoles the measured gradient
could have been used.

Fig. 1 - Representation by thin rectangular matrices of the total quadrupole transport matrix

Thin lens model

The (2 × 2) transport matrix describing a symmetric system in one plane has two degrees of
freedom, because the two diagonal elements are equal and the matrix determinant is equal to 1. It is
well known that it is possible to write the matrix as the product of two drift matrices with a thin lens
in between:
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(5)

The value of 2dF  does not usually correspond to the real length of the system. The other
plane will be represented by:
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(6)

The two parameters describing the system in one plane are then:

1
f F

= a21

dF = a11 − 1
a21

(7)

and analogous expressions for the other plane.
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The subscripts 'F' and 'D' have been chosen as referring to focusing and defocusing, because
in the case of our symmetric system consisting of a quadrupole with two adjacent drifts the lenses
will have opposite signs in the two planes.

Let's make first an example with the rectangular model quadrupole: considering one typical
quadrupole of DAΦNE, with total magnetic length Lq = 0.30 m , the values of the four character-
istic parameters have been computed as functions of K.

We can see (Fig. 2) that 2dF  is larger than the original total length 2L, while 2dD  is shorter.
The absolute value of the focal length is larger in the focusing plane than in the defocusing. As can
be easily foreseen the differences between the two planes increase for longer quadrupoles, which
are more distant from the thin lens model. It is clear that the advantage of using the rectangular
model representation instead of the thin lens model is that the first one depends on two parameters,
while the second on four.

-0.01

-0.005

0

0.005

0.01

0 0.5 1 1.5

KL

F

D

( m )

(m   )- 1
q

d  - L

d  - L

-10

- 5

0

5

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

KL

F

D

( m )

(m   )- 1
q

f

f

0.9

0.95

1

1.05

1.1

0 0.5 1 1.5

KL

F

D

(m   )-1
q

(1/f) / KL
q

Fig. 2 - Variation with KLq of the four characteristic parameters in the thin lens
 approximation of the rectangular model quadrupole

However the thin lens model is useful in comparing the rectangular model with the matrix
obtained following the longitudinal gradient behaviour, which we will call hereon the sliced model.
Applying eq. (7) to this matrix, the difference between the four characteristics parameters and the
corresponding ones obtained with the rectangular model is a measure of the accuracy of the
rectangular model approximation. The parameters on which this accuracy depends on are
essentially two: the longitudinal shape of the gradient, which depends on the ratio Rc / Lc , and the
integrated gradient value.

Figure 3 shows these fractional differences for a quadrupole with magnetic length
Lq = 0.30 m , versus Rc / Lc , for three different values of K.

It is obvious that to understand if these differences are negligible it is necessary to know the
values of the betatron functions in the quadrupole position. For example in Adone it was found6, by
measuring the β functions and the machine tunes, a difference of 0.2 in the tunes of both planes
with respect to the original machine model, difference which was eliminated by adjusting by ~6%
the product LqK.
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Fig. 3 - Fractional difference in percentage of the four characteristic parameters of the sliced model
with respect to those of the rectangular model versus the ratio Rc/Lc ,

for three different values of K for a quadrupole with Lq=0.30 m

Constant length model

In the usual rectangular quadrupolar model of optical linear computations the actual length of
the system corresponds to the model length, which is not true in the thin lens model. In general it is
convenient to maintain the total length of the model equal to the real length of the system. Adding
an extra parameter in the model per plane the condition on the length can be fulfilled. It is
straightforward to write then the total matrix as the product of three matrices, corresponding to drift,
rectangular model quadrupole and drift:
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(9)

with θF = KF LqF  , θD = −KD LqD , and LqD + 2dD = LqF + 2dF = 2L .

From :

a11 = cosθF − KF dF sinθF

a21 = − KF sinθF

a33 = coshθD + KD dD sinhθD

a43 = −KD sinhθD

(10)

the values of KF  , KD , LqF  and
 
LqD  are determined.
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We have again four parameters whose difference from the rectangular model give the
measure of the accuracy of the rectangular model. Figure 4 shows an example of the fractional
difference between KF  , KD  and K  and between LqF , LqD  and Lq  as function of Rc / Lc  for
Lq = 0.30 m and K = 2 m

−2. The magnetic length of the sliced model is shorter in the defocused
plane than in the focused one, while the strength 'K' is larger in the defocused plane (in the figure
the change in K refers to its absolute value).
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Fig. 4 - Fractional difference between the four characteristic parameters of the sliced model
and the corresponding two of the rectangular model as Rc/Lc increases

for a quadrupole with K=2.m-2 and Lq=0.3 m

Normal Conducting Quadrupoles

The above considerations can be applied to DAΦNE quadrupoles. The values of the four
parameters have been computed for the three different quadrupole types for values of the integrated
gradient ranging from zero to the maximum value. The results are summarized in Figs. 5-7. The
relative change in length and strength is in very good approximation linear with KLq :

∆KF,D

K
=

KF,D − K

K
≈ AF,D

K + CF,D
K

KLq

∆LF,D

K
=

LqF,D − Lq

Lq
≈ AF,D

L + CF,D
L

KLq

(11)

so we can write the new matrices using, instead of the nominal values of K  and Lq  the values
obtained as:

KF,D = K 1 + AF,D
K + CF,D

K
KLq( )

LqF,D = Lq 1 + AF,D
L + CF,D

L
KLq( )

(12)

where the coefficients AF,D
K , AF,D

L , CF,D
K , CF,D

L  are given in the following table and have been
deduced by fitting the curves of Figs. 5-7. The fact that there is a term AF,D is due to the different
behaviour of the curves very near to zero.
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Table II - Model Coefficients in units of 10-2

Quad AF
K

CF
K

AF
L

CF
L

AD
K

CD
K

AD
L

CD
L

1-S -0.013 -0.290 0.013 0.160 -0.013 0.294 0.013 -0.160

2-M -0.016 -0.362 0.016 0.203 -0.016 0.366 0.016 -0.203

3-L -0.099 -1.186 0.093 0.708 -0.099 1.229 0.093 -0.709

Permanent Magnet Quadrupoles

There are five couples of permanent magnet quadrupoles in DAΦNE, three in the KLOE IR
and two in the FI.NU.DA. one. Almost all of them have a large value for the ratio Rc/Lc, and also a
high value of the gradient. Furthermore some of them are placed in the highest vertical betatron
value positions, and therefore the difference between the rectangular and the sliced model cannot
absolutely be neglected.

Figure 8 shows the nominal quadrupole parameters. The values of LqF,D and KF,D have been
computed according to eq. (10). The differences with respect to the rectangular model values are
given in Fig. 9.

Figure 10 shows the fractional difference between the nominal integrated strength and the one
obtained with our model. The subscripts in these case have been named 'x' and 'y' because the
polarity of the quadrupoles is fixed. All these parameters are resumed in Table III.

The accuracy of the IR optical model had been already considered7,8 and in fact the present
nominal optics of the KLOE and FI.NU.DA IR design are based on the sliced model, which has
been used to compute the integrated gradients of the pm quadrupoles.
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Table III - Characteristic parameters for the permanent magnet quadrupoles

Kx(m-2) Ky(m-2) Lqx(m) Lqy(m) DKLx(m-1) DKLy(m-1)

QF1 3.4815 3.4975 0.20029 0.19977 -0.0007 0.0007

QD 5.7210 5.6377 0.34864 0.35147 0.0066 -0.0065

QF2 2.7609 2.8148 0.27180 0.26866 -0.0029 0.0029

Q1 5.4773 5.6148 0.15885 0.15641 -0.0040 0.0041

Q2 6.3965 6.3020 0.29382 0.29628 0.0062 -0.0061
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Effects On The Main Ring Optics

The difference in the optical functions between a lattice calculated with the rectangular model
and one calculated with the sliced model can be found by adding to each quadrupole a term ∆KL ,
with different sign in the two planes.

Let's remind that in a storage ring a thin lens gradient error of strength ∆KL  produces in the
i-th plane a tune shift given by:

 ∆Qi = 1
4π

βi ∆KL (13)

where βi  is the betatron function at the location of the gradient error. We can see for example that
in the KLOE quadrupole QD where the vertical betatron function reaches ~30 m, the corresponding
tune shift in the vertical plane is ∆Qy = −0.016.

The overall tune shift can be found by summing up the contributions of all quads. The total
effect is always a negative tune shift: in the plane where the quadrupole focuses the value of |K|
decreases and the corresponding ∆Q is negative. In the plane where the quadrupole defocuses the
value of |K| increases and again ∆Q is negative. In general the effect is stronger in the plane with
higher chromaticity.

In order to quantify how much the two models differ in the DAΦNE optics the DAY-ONE
lattice9 has been investigated. The rectangular model for each quadrupole has been replaced with
the two matrices (8/9) obtained from the sliced model, using eqs. 12, maintaining for each
quadrupole the nominal integrated gradient, and the periodic solution has been computed. The
lattice parameters in the horizontal plane are shown in the following table IV.

Table IV - Difference in the ring optics due to the different quadrupole models
for all quadrupoles in the horizontal plane

Rectangular model Sliced model

Qx 5.090 5.057

Qx' -7.19 -7.35

βx @IP (m) 4.5 4.89

αx @IP 0.0 -0.088

Dx @IP (m) 0.0 -0.022

βxmax (m) 15.32 16.12

Dxmax (m) 2.28 2.29

Dx (rms) (m) 1.09 1.06
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In the vertical plane the tune shift is almost equal to the fractional part of the tune and the
motion becomes unstable. The strongest responsible is the 3rd quadrupole of the IR where the
vertical betatron function is 26 m, the integrated gradient is very high (KLq=1.5m-1) and the
fringing field is long because of the quadrupole large aperture.

The difference between the two lattices has been studied also excluding the IRs, i.e., using for
the IR the nominal optics and changing the quadrupole models in the arcs. The differences are
summarized in the following table V. They are not negligible.

Table V - Lattice function due to the different quadrupole models
for the quadrupoles in the arcs

Rectangular model Sliced model

Qx 5.090 5.079

Qx' -7.19 -7.14

βx @IP (m) 4.50 4.60

αx @IP 0.00 -0.024

Dx @IP (m) 0.00 -0.015

βxmax (m) 15.32 15.28

Dxmax (m) 2.28 2.29

Dx (rms) (m) 1.09 1.10

Qy 6.070 6.058

Qy' -19.29 -20.36

βy @IP (m) 0.045 0.042

αy @IP 0.00 0.005

Dy @IP (m) 0.00 0.00

βymax (m) 25.73 27.56

Dymax (m) 0.00 0.00

Dy (rms) (m) 0.00 0.00

We can conclude that it is convenient to take into account the field gradient behaviour all
along the ring, while it is absolutely necessary in the IR design. The models will be available when
all different kinds of quadrupoles will be measured. A complete description of the IR optics taking
into account also the fact that the beam central trajectory is off-axis is described elsewhere7,8.
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