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QUADRUPOLE MODELLING

C. Biscari

Optical linear properties of quadrupoles are usually described in the rectangular model
approximation, in which the first order transport matrix is defined by the magnetic length of the
guadrupole and by its gradient. Thisisavery good approximation as long as the ratio between the
bore radius and the magnetic length is small. As this ratio increases the field gradient longitudinal
behaviour cannot be approximated by a rectangle and the description by the usual matrix is not
sufficiently accurate. The deviation of the effective linear transport matrix from the rectangular
model increases with the gradient value. A discussion of these deviations for the different types of
quadrupolesin DA®NE is given in the following.

DA®NE Main Ring Quadrupoles
In the DA®NE Main Rings there are eight types of quadrupoles, as reported in the following

table. The magnetic length L, the bore radius R, and the maximum gradient Gmax (nomina for the
permanent magnet types) comes from the lattice design.

Table | - DA®NE Main Rings Quadrupole types

Type iy 2'\rli ngs (aLﬂ) (c:F:n) (cI:_rTC1) (0Rr$1) Rolc 37'3? Tr?g;( Note
1S 56 | 30. 50 |30 | 100 | 033|100 |6 |Sraght-Oxford
oM | 28 | 30 54 | 292 | 106 | 0363 | 6. | 35 |ArcstshortkloeAnsado
3L 8 |40 |1200 |40 | 20 | 0500 | 62 | 36 |DI+FINUDA-Ansddo
4QFL| 2 | 20 52 | 20 8. | 0400 | 593 | 349 |Pm-KLOE-ASTER
s | 2 | 3s 73 | 35 | 12 | 0343 | 966 | 568 |PmKLOE-ASTER
eQr2| 2 |27 92 |27. | 16. | 0593 | 474 | 279 |PmKLOE-ASTER
7-Q1 2 | 1575 | 70 | 1575 | 120 | 0762 | 943 | 555 |PmFINUDA-ASTER
8 Q2 > | 205 | 65 | 2905 | 11. | 0373 | 1080 | 6.35 |Pm-FINUDA - ASTER

Types 1, 2, 4 have been already measured at LNF'#2*. It is possible to fit the gradient
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measurements with an analytical function®, corresponding to the gradient created by a cylindrical
current distribution with quadrupolar behaviour, described by two parameters, Rc and L¢, which are
the radius and the length of the cylindrical current distribution (not necessarily equal to radius and
length of the real quadrupole). Intable | the values of R and L are the best vaues from the fit on
measurements for types 1, 2 and 4; for the types where no field measurements are still avalable L¢
is equa to the design magnetic length and R. has been extrapolated from the measured
guadrupol es.

Analytical quadrupole model

The andytica function describing the longitudina behaviour of the gradient coming from a
quadrupolar cylindrical current distribution of length L, =27, and radius R; is®:

9 3 tI’T]iilX
Goo(@) = const | £ fo(t) - f1(0)+ 1200 )
tmin
with
2k+1
t
f(t) = T2 2 (2
J R+t
and tmax = Z|_ —Z, tmin = _ZL —Z.
The vaue of the const is determined by the integrated gradient:
L
J.Gzo(Z)dZ = Bp KLq (3)

-L

where K and Ly are the nominal strength and magnetic length of the real quadrupole which we
want to fit with the analytical function.

For each quadrupole type, the function Gyp(z) has been computed for —L <z< L, with
L>> L. + R./L., for different valuesof K. The 2L longinterval has been divided into N equally
long parts (see Fig. 1), and for each of them the linear matrix has been computed corresponding to
a quadrupole 2L/ N long, with a gradient Glzo corresponding to the average between the two
vaues of Gyp(z) and Gyp(z,4), being z and z_4 the ith interva limits. Multiplying those N
linear matrices, the symmetric matrix corresponding to the total interval is obtained.

At thispoint it is possible to check how much this total matrix differs from the corresponding
rectangular model matrix defined by:

N .
2L Y Gy = BpKLy (4)
i=1

For smplicity adl quadrupoles have been treated in the same way, using the anaytica
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expression of the gradient, even if for the aready measured quadrupoles the measured gradient
could have been used.

Fig. 1 - Representation by thin rectangular matrices of the total quadrupole transport matrix

Thin lens model

The (2 x 2) transport matrix describing asymmetric system in one plane has two degrees of
freedom, because the two diagona elements are equal and the matrix determinant is equa to 1. It is
well known that it is possible to write the matrix as the product of two drift matrices with a thin lens

in between:
ay a2) (1 de 1 0)\(1 de c
(321 azz)_(o 1)(J/f,: 1)(0 1) )

The value of 2dg does not usually correspond to the real length of the system. The other
plane will be represented by:

dgzz adgy _ 1 dD 1 0\/1 dD 6
[343 a44)_(0 1)(“0 1)(0 1) ©

The two parameters describing the system in one plane are then:

1
T a1
- ™
de = ail.l_l
F=
ar)

and analogous expressions for the other plane.
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The subscripts'F and 'D' have been chosen as referring to focusing and defocusing, because
in the case of our symmetric system consisting of a quadrupole with two adjacent drifts the lenses
will have opposite signsin the two planes.

Let's make first an example with the rectangular model quadrupole: considering one typica
quadrupole of DA®NE, with total magnetic length Ly = 0.30 m, the values of the four character-
istic parameters have been computed as functions of K.

We can see (Fig. 2) that 2dg islarger than the origina total length 2L, while 2dp is shorter.
The absolute value of the focal length islarger in the focusing plane than in the defocusing. As can
be easily foreseen the differences between the two planes increase for longer quadrupoles, which
are more distant from the thin lens model. It is clear that the advantage of using the rectangular
model representation instead of the thin lens model is that the first one depends on two parameters,
while the second on four.
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Fig. 2 - Variation with KLq of the four characteristic parameters in the thin lens
approximation of the rectangular model quadrupole

However the thin lens mode is useful in comparing the rectangular model with the matrix
obtained following the longitudinal gradient behaviour, which we will cal hereon the diced model.
Applying eg. (7) to this matrix, the difference between the four characteristics parameters and the
corresponding ones obtained with the rectangular model is a measure of the accuracy of the
rectangular model approximation. The parameters on which this accuracy depends on are
essentially two: the longitudinal shape of the gradient, which depends on the ratio R. / L, and the
integrated gradient value.

Figure 3 shows these fractiona differences for a quadrupole with magnetic length
Lq=0.30m, versus R. / L, for three different values of K.

It isobviousthat to understand if these differences are negligible it is necessary to know the
values of the betatron functionsin the quadrupole position. For examplein Adone it was found®, by
measuring the B functions and the machine tunes, a difference of 0.2 in the tunes of both planes
with respect to the original machine modd, difference which was eiminated by adjusting by ~6%
the product LgK.
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Fig. 3 - Fractional difference in percentage of the four characteristic parameters of the sliced model
with respect to those of the rectangular model versus the ratio Re/Lc ,
for three different values of K for a quadrupole with Lq=0.30 m

Constant length model

In the usua rectangular quadrupolar model of optical linear computations the actual length of
the system corresponds to the model length, which is not truein the thin lensmodel. In generd it is
convenient to maintain thetota length of the model equal to the red length of the system. Adding
an extra parameter in the model per plane the condition on the length can be fulfilled. It is
straightforward to write then the total matrix as the product of three matrices, corresponding to drift,

rectangular model quadrupole and drift:
(all a2 ]
a1 axp

(833 3.34)_(1 dD
a3 0 1

1 de
0 1

)

J

CoSOf

—/\’r"‘ KF g n 0':

cosh6p

\_KD sinh9D

with HF :\/KF LqF , UD :\/_KD LqD ,and LqD +2dD :LqF +2d|:: 2L.

From:

1= COSOF _\KF d|: sin9,:

3212—\;5K|: sin9,:

1
JKe [ dF) t)
0 1
CcosOp
SBp )y g,
v Ko |y 9)
cosh6p
(10)

ag3 = cosh OD +\TD stinh 9D

ay3 =+/—Kp sinh6p

thevaluesof Kg , Kp, Lgr and Lgp are determined.
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We have again four parameters whose difference from the rectangular modd give the
measure of the accuracy of the rectangular model. Figure 4 shows an example of the fractiona
difference between Kg , Kp and K and between Lye, Lgp and Ly as function of R./L¢ for
Lq=0.30mand K =2m ~. The magnetic length of the sliced model is shorter in the defocused
plane than in the focused one, while the strength 'K" is larger in the defocused plane (in the figure
the changein K refersto its absolute value).

Fig. 4 - Fractional difference between the four characteristic parameters of the sliced model
and the corresponding two of the rectangular model as R¢/L¢ increases
for a quadrupole with K=2.m2 and Lg=0.3 m

Normal Conducting Quadrupoles

The above considerations can be applied to DA®NE quadrupoles. The vaues of the four
parameters have been computed for the three different quadrupole types for values of the integrated
gradient ranging from zero to the maximum vaue. The results are summarized in Figs. 5-7. The
relative change in length and strength isin very good approximation linear with KLg:

AKep _Kgp-K =k K
= = ~ +Cr p KL
K K Ar D +CrpKlg

K L

. . (11)
=~ As p +Cf p KLy

q

so we can write the new matrices using, instead of the nominal values of K and L the values
obtained as:

Ke b = K(1+ AR b +CEp KLq)
(12)

L L
Lar.D = Lq(1+ AF b +CFp KLq)

where the coefficients AE,D, AIF‘,D, CED, CI,:‘,D are given in the following table and have been
deduced by fitting the curves of Figs. 5-7. The fact that there is aterm Ag p is due to the different
behaviour of the curvesvery near to zero.
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Fig. 6 - AlK|g p/[K[,ALg p/ Lq(a) and A|K|L,:,D/|K|Lq (b) for the quadrupole type 2-M.
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Table Il - Model Coefficients in units of 10-2

Qud | AR | cf | AF | CGF| A | G| A5 | Co

1-S -0.013 | -0.290 | 0.013 | 0.160 | -0.013 | 0.294 | 0.013 | -0.160

2-M -0.016 | -0.362 | 0.016 | 0.203 | -0.016 | 0.366 | 0.016 | -0.203

3L -0.099 | -1.186 | 0.093 | 0.708 | -0.099 | 1.229 | 0.093 | -0.709

Permanent Magnet Quadrupoles

There are five couples of permanent magnet quadrupoles in DA®NE, three in the KLOE IR
and two in the FI.NU.DA. one. Almost dl of them have alarge vaue for the ratio Ry/L¢, and dso a
high vaue of the gradient. Furthermore some of them are placed in the highest vertical betatron
vaue positions, and therefore the difference between the rectangular and the diced model cannot
absolutely be neglected.

Figure 8 shows the nomina quadrupole parameters. The values of Lgr,p and K, p have been
computed according to eq. (10). The differences with respect to the rectangular model values are
giveninFig. 9.

Figure 10 showsthe fractional difference between the nominal integrated strength and the one
obtained with our model. The subscripts in these case have been named 'x' and 'y’ because the
polarity of the quadrupolesisfixed. All these parameters are resumed in Table 1.

The accuracy of the IR optical model had been aready considered’? and in fact the present
nominal optics of the KLOE and FI.NU.DA IR design are based on the diced modd, which has
been used to compute the integrated gradients of the pm quadrupol es.
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Fig. 8 - Pm quadrupoles nominal characteristic
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Fig. 10 - (‘Kx,y‘LqX,y —|K|Lq)/|K|Lq in the two planes for the permanent magnet quadrupoles

Table Il - Characteristic parameters for the permanent magnet quadrupoles
Ky(m2) Ky(m) Lgx(m) Lgy(m) DKLy(m?) | DKLy(m?)
QF1 3.4815 3.4975 0.20029 0.19977 -0.0007 0.0007
QD 5.7210 5.6377 0.34864 0.35147 0.0066 -0.0065
QF2 2.7609 2.8148 0.27180 0.26866 -0.0029 0.0029
Q1 54773 5.6148 0.15885 0.15641 -0.0040 0.0041
Q2 6.3965 6.3020 0.29382 0.29628 0.0062 -0.0061
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Effects On The Main Ring Optics

The difference in the optical functions between a lattice calculated with the rectangular model
and one calculated with the sliced model can be found by adding to each quadrupole aterm AKL,
with different sign in the two planes.

Let'sremind that in astorage ring athin lens gradient error of strength AKL produces in the
i-th plane atune shift given by:

AQ :4—];[ﬁi AKL (13)

where B; isthe betatron function at the location of the gradient error. We can see for example that
in the KLOE quadrupole QD where the vertical betatron function reaches ~30 m, the corresponding
tune shift in the vertical planeis AQy = —0.016.

The overal tune shift can be found by summing up the contributions of dl quads. The tota
effect is dways a negative tune shift: in the plane where the quadrupole focuses the vaue of |K|
decreases and the corresponding AQ is negative. In the plane where the quadrupole defocuses the
value of |K| increases and again AQ is negative. In genera the effect is stronger in the plane with
higher chromaticity.

In order to quantify how much the two models differ in the DA®NE optics the DAY-ONE
lattice® has been investigated. The rectangular mode! for each quadrupole has been replaced with
the two matrices (8/9) obtained from the diced modd, using egs. 12, maintaining for each
quadrupole the nomina integrated gradient, and the periodic solution has been computed. The
lattice parameters in the horizontal plane are shown in the following table V.

Table IV - Difference in the ring optics due to the different quadrupole models
for al quadrupoles in the horizontal plane

Rectangular model Sliced model
Qx 5.090 5.057
Q« -7.19 -7.35
Bx @IP (m) 4.5 4.89
oy @IP 0.0 -0.088
Dy @IP (m) 0.0 -0.022
Pxmax (M) 15.32 16.12
Dymax (M) 2.28 2.29
Dy (rms) (m) 1.09 1.06
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In the verticd plane the tune shift is ailmost equal to the fractiona part of the tune and the
motion becomes unstable. The strongest responsible is the 3 quadrupole of the IR where the
vertical betatron function is 26 m, the integrated gradient is very high (KLg=15m1) and the
fringing field islong because of the quadrupole large aperture.

The difference between the two lattices has been studied also excluding the IRs, i.e.,, using for
the IR the nominal optics and changing the quadrupole models in the arcs. The differences are
summarized in the following table V. They are not negligible.

Table V - Lattice function due to the different quadrupole models
for the quadrupoles in the arcs

Rectangular model Sliced mode
Q« 5.090 5.079
Q -7.19 -7.14
Bx @IP (m) 4.50 4.60
ay @IP 0.00 -0.024
Dy @IP (m) 0.00 -0.015
Bxmax (M) 15.32 15.28
Dxmax (M) 2.28 2.29
Dy (rms) (m) 1.09 1.10
Q 6.070 6.058
Q' -19.29 -20.36
By @IP (m) 0.045 0.042
oy @IP 0.00 0.005
Dy @IP (m) 0.00 0.00
Bymax (M) 25.73 27.56
Dymax (M) 0.00 0.00
Dy (rms) (m) 0.00 0.00

We can conclude that it is convenient to take into account the field gradient behaviour dl
along thering, whileit is absolutely necessary in the IR design. The models will be available when
all different kinds of quadrupoles will be measured. A complete description of the IR optics taking
into account also the fact that the beam central trajectory is off-axisis described elsewhere’8,
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